
Math 3710W 1–15. Created In Connecticut

2020 University of Connecticut

1

From Flocks to Fish: How the Boids Algorithm
Simulates Flocking Behavior

Written By: Ethan Rathbun

(Submitted 18 December 2020)

Fig. 1. The natural beauty of flocking birds

1 Introduction: The Birth of the Boid

How do you simulate the gracious flocking motions of dozens of birds all at once?

Each bird makes their decision based on the movements of all the other birds creat-

ing a complex system of nested co-dependence, so how could one simulate this using

the limited computing power of an early computer? This is a question that Craig

Reynolds sought to answer in his 1987 paper “Flocks, Herds, and Schools: A Dis-

tributed Behavioral Model”, which sparked the deep dive into the study of Swarm

Intelligence. In particular, Reynolds noticed that the beautiful flocking motions of

birds seen in the natural world was missing from the computer animator’s toolkit.

While a skilled animator could spend countless hours animating each individual

bird in a flock to act in a realistic manner, there was no efficient way to simulate

the process. In the aforementioned paper Reynolds devised a system of objects he

referred to as “boids” (bird-oid objects) that would act as individuals but make

decisions based on the behavior of other, surrounding boids. His algorithm, com-

monly referred to as the “Boids Algorithm” efficiently created convincing flocking

behavior.

2 Ethan Rathbun

1.1 Introduction: Boids Algorithm in Computer Animation

Since the Boids Algorithm was developed multiple films, TV shows, and video games

have adapted the algorithm to efficiently animate various creatures in a convincing

way. The first example of this is shown in in the short film “Stanley and Stella in:

Breaking the Ice”. It was created by Craig Reynolds and others as a way to showcase

the animation capabilities of the newly developed Boids Algorithm. In this iteration

of the Boids Algorithm the boids were programmed to seek a goal object and avoid

obstacles. The goal could be moved around dynamically in 3D space as to give the

perception that the boids were making deliberate decisions about where the flock

should head. The algorithm also saw use in the groundbreaking Video game “Half

Life”. There the programmers use the Boids Algorithm to allow bird-like, alien

creatures to fly around in a way that dynamically adapted to the environment and

the player, creating a convincing effect that would further immerse the player in

the game’s world.

1.2 Introduction: Swarm Intelligence

While the Boids Algorithm was originally created with computer animation in mind,

the algorithm was found to be more versatile than expected since then. This is be-

cause the model leads exhibits “emergent properties”, meaning complex behavior

can result from the algorithm’s use of relatively simple rules. This lead to the cre-

ation of a field of research called “Swarm Intelligence”. Using swarm intelligence

techniques a programmer can solve practical and complex problems that have no

obvious solutions. One instance of this is found in the “Particle Swarm Optimiza-

tion Algorithm” (PSO), a modified form of the boids algorithm that was found to

have optimization properties. This paper is not about optimization, however a brief

summary of optimization problems will be provided.

In general there is some function the user is trying to optimize, called the objective

function, meaning they are attempting to find either a global minimum or a global

maximum (in general: global optimum). Many objective functions have multiple local

optimums, meaning they are non-convex. This makes finding the global optimum

extremely difficult as there is often no way to verify a given local optimum is global.

The idea behind PSO is to perform multiple simultaneous searches of the objective

function all starting from different positions of the objective function’s domain.

These searches, called particles, each have a random starting velocity and position,

and then share with each other when a more optimal point is found. These new

optimal values then influence the movement of all the particles in the system,

causing them to eventually swarm and converge on a local optimum. The particles

use no information on the gradient of the objective function so the algorithm can

be used on non-differentiable objective functions. While the algorithm is likely to

find a local optimum, it is not guaranteed to find a global optimum, leading it

to be classified as a meta-heuristic. Swarm intelligence has also been used to find

From Flocks to Fish: How the Boids Algorithm Simulates Flocking Behavior 3

approximations to the solution of NP-Complete problems such as the Traveling

Salesmen Problem.

Fig. 2. Particles eventually converge on a local optimum of the objective function

2 Background: A Summary of What You Need to Know

What makes the Boids Algorithm so beautiful and effective is its simplicity, this

means there are no overly complex concepts that one needs to understand in order to

understand the algorithm. In general one should be comfortable with the following:

vectors and vector operations, difference equations, and computational complexity.

These topics will be explored in more detail in the following subsections.

2.1 Background: Vectors and Vector Operations

Vectors are versatile mathematical objects that will be used to represent the ve-

locity of the boids in this model. The intuitive representation of vectors comes in

the form of a line with an arrow at the end (Fig. 3). Vectors have two key prop-

erties, a magnitude and a direction within the space they exist in. Intuitively the

magnitude of a vector can be thought of as the length of the line that represents it,

while the direction can be thought of as the angle at which the arrow is pointing.

Mathematically vectors are represented as follows:

−→x =


x1
x2
...

xn


This vector has n components represented as xi, meaning it exists within a n-

dimensional space. Each component represents the magnitude of the vector within

a given direction of the space it occupies. To simplify things this paper will focus on

4 Ethan Rathbun

2-dimensional space with all components representing real numbers, however the

concepts can be applied to any n-dimensional space. In 2 dimensions you can think

of vectors as having an x and a y component in a Cartesian plane. Bellow it will be

shown how to perform addition between vectors as well as how to multiply a vector

by a number value called a “scalar”.

−→a +
−→
b =

[
a1
a2

]
+

[
b1
b2

]
=

[
a1 + b1
a2 + b2

]

c · −→a = c ·
[
a1
a2

]
=

[
c · a1
c · a2

]
A visual representation of vector addition and scalar multiplication can be seen

in Fig. 3.

Fig. 3. Left: Vector Addition, Right: Vector Scalar Multiplication

2.2 Background: Difference Equations

Difference equations are a way to represent discrete changes in a variable over

discrete steps in time. Here discrete means the changes in time are distinct and

occur in steps rather than in a continuous fashion. If one were to go for a run and

keep track of their progress once every minute, they would create a discrete graph

of their progress with the discrete time step being 1 minute. Generally difference

equations are represented in the following way:

xn+1 = f(xn, xn−1, · · · , xn−j)

Here n represents a discrete time step, so x3 will represent the value of x after

3 steps or iterations of the function. To get the value of x at a given n one has to

first choose a starting value of x, often represented as x0, and then iterate through

the given function n times. Below a simple example will be given:

xn+1 = 3xn , x0 = 2

n = 0 xn = x0 = 2

n = 1 xn = 3(2) = 6

n = 2 xn = 3(6) = 18
...

...

From Flocks to Fish: How the Boids Algorithm Simulates Flocking Behavior 5

The study of difference equations is a vast field of applied and theoretical math-

ematics, however, in this paper, understanding how they are represented and how

they are used is sufficient.

2.3 Background: Computational Complexity

Much of the focus of computer science research goes into finding algorithms that

can generate solutions to a given problem, however not all algorithms are equal.

One key trait of an algorithm is efficiency. More rigorously, efficiency is measured

by the number of operations the algorithm needs to perform before it arrives at the

solution. This is often called the running time or time complexity. This is measured

as a function of the size of the problem given to the algorithm, often represented

as n. For example, you should expect it to take more operations to find the largest

number out of 100 numbers than to find the largest number out of 10 numbers.

Yet the size of the problem is not the only factor, say you had an unorganized list

of students in your math course next semester and you want to see if your friend,

Alan T., is in the class. Now look at the following two instances of this problem:

Instance 1 Instance 2

Alan T. Shafi G.

Andrew N. John C.

Katherine J. Benoit M.
...

...

Kurt G. Alan T.

If your strategy is to look down the list of names until you find your friend’s

name or until you reach the end, then clearly you will finish significantly faster in

instance 1 than in instance 2. In fact, instance 1 represents the best case scenario as

you only need to check 1 name, while instance 2 represents the worst case scenario

since you need to check every name. Thus computer scientists devised 3 different

ways to measure the computational complexity of an algorithm: upper bound on

time complexity (worst case), lower bound on time complexity (best case), and a

tight bound on time complexity (bounds both worst and best case). For simplic-

ity this paper will focus on the upper bound for running time as it is the most

commonly used. This upper bound is referred to as “Big-O” notation, meaning the

computational complexity of an algorithm is represented as O(f(n)) where n is the

size of the problem and f is some function of n. Now return to the math class prob-

lem from earlier, in the worst case scenario the algorithm will check all n names

in the list of students, so the time complexity in Big-O notation is O(n), known

as linear time. If the algorithm had to check an array of size n × n then the time

complexity would be O(n2) which is parabolic. In general, algorithms of the form

O(nc) for some constant c are called polynomial-time algorithms. Any algorithm

that can be bounded by a polynomial time function of n is generally considered

efficient, although efficiency is often measured relative to algorithms that already

exist for the given problem. If an algorithm needs to check every subset in a set

6 Ethan Rathbun

of size n it will have O(2n) time complexity, this cannot be bounded by any poly-

nomial function of n so the algorithm is not considered efficient. Big-O notation,

along with the other two bounds, is an asymptotic bound where overall behavior

as n grows large is considered most important. This means constants and slower

growing terms are discarded when the final Big-O time complexity is given. See the

following examples.

f(n) Big −O Complexity Efficient?

3n2 + n+ 5 O(n2) yes

2n + n10 O(2n) no

n! + 2n O(n!) no

n · log(n) + n O(n · log(n)) yes

Fig. 4. Different asymptotic time complexities

3 Mathematical Formulation: Overview and Assumptions

In the following sections a detailed, mathematical formulation of the Boids Algo-

rithm will be presented, but before then the following assumptions must be made:

1. The boids exist within some finite 2-dimensional space within which they can

freely roam.

2. There are no external factors that impact the movement of the boids.

3. Each boid is aware of all the boids within a certain radius and is unaware of

those outside the radius.

4. Boids can not physically collide with each other, but rather pass through each

other.

From Flocks to Fish: How the Boids Algorithm Simulates Flocking Behavior 7

While these assumptions do prevent the model from being a perfect simulation of

real life flocking behavior, the model will still create convincing visuals that can be

adapted and added to for more accurate models.

3.1 Mathematical Formulation: The Boids and Their Representation

Each of the boids will have two properties: a position and a velocity, both of which

will be represented with an x-component and a y-component in the 2-dimensional

Cartesian plane. Mathematically, and in computer code, the velocity and position

of a boid can be represented with two vectors. The following notation has been

adopted:

ith boid = bi

velocity of ith boid = veli =

[
vxi
vyi

]
position of ith boid = posi =

[
xi
yi

]

3.2 Mathematical Formulation: A Change in Velocity

The position of each boid will update after a discrete step in time. Thus the move-

ment of each boid is represented by the following difference equation:

(posi)n+1 = (posi)n + veli

This difference equation is fairly simple on the surface, however the complexity

comes from how the velocity value of a boid is found. In particular, the velocity of

a boid follows three rules:

Fig. 5. Separation property of the boids

Separation: boids will avoid coming in too close contact with eachother, this is

designed to prevent all the boids from converging into a single point and give more

realistic spacing to the flock. More explicitly boids will take note of other boids who

8 Ethan Rathbun

are too close to them and adjust their velocity away from the other boids. Here,

there is a predefined distance called the alert distance (alert). A näıve approach to

this problem is the following:

separationi =
∑

posi − posj ∀ j | dist(posi, posj) ≤ alert

Where the function “dist” calculates the distance between two vectors using the

euclidean norm, as shown below:

dist(posi, posj) =
√

(xi − xj)2 + (xi − yj)2

The problem here is that the value of posi − posj will linearly decrease as bi and

bj get closer to each other. This will cause closer together boids to not push away

from each other, while further apart birds will push away strongly. This leads to

the development of the following summation:

posi − posj = diff

separationi =
∑

(alert− |diff|) ? sign(diff) ∀ j | dist(posi, posj) ≤ alert

In this scenario, diff is clearly a vector, so for the sake of convenience, and to

correspond to their application in code, we define the following short hand, element-

wise vector operations:

vec =

[
x

y

]
sign(vec) =

[
x
|x|
y
|y|

]
a− vec =

[
a− x
a− y

]
veci ? vecj =

[
xj · xi
yj · yi

]
The resulting “separation” vector will be a vector pointing away from nearby

boids in the flock relative to the position of the current bi. Thus if this vector is

added to the velocity vector of bi it will cause the boid to begin accelerating away

from boids that are too close by.

From Flocks to Fish: How the Boids Algorithm Simulates Flocking Behavior 9

Fig. 6. Alignment property of the boids

Alignment: boids will align their velocity in accordance to the other boids around

them. This is designed to create the illusion that all boids are flying to the same

end goal with the same direction. This is done by taking the average velocity of all

the surrounding boids and then adjusting each boid to move in that direction. The

radius within a which a boid considers the direction of the other boids is the flock

distance (flock). This change in velocity is calculated with the following equation:

directioni =
1

n

∑
velj ∀ j | dist(posi, posj) ≤ flock

“direction” will then contain the average velocity of all boids within the radius

of a given boid.

flockingi = veli − directioni

The resulting “flocking” vector will be a vector that points a given boid’s velocity

vector into the direction of the average velocity of all the boids around it.

10 Ethan Rathbun

Fig. 7. Cohesion property of the boids

Cohesion: lastly, boids will gravitate towards the center of all the boids within

their sight radius, this is the main property that causes the boids to group into

a flock. This property will use the same radius as the alignment property, that

being “flock”. This change in velocity is calculated with the following equations:

centeri =
1

n

∑
posj ∀ j | dist(posi, posj) ≤ flock

“center” will then contain the position of the center of the flock within the radius

of a given boid.

cohesioni = posi − centeri

The resulting “cohesion” vector will be a vector that points a given boid’s velocity

vector towards the average position of all boids around it.

3.3 Mathematical Formulation: Putting it All Together

Once all the different rules have been applied to find the corresponding separation,

alignment, and cohesion vectors, they are then added to the velocity of each boid

using the following equation:

(veli)n+1 = (veli)n + α · separationi − β · alignmenti − δ · cohesioni

The parameters α, β, δ should all be within the range [0, 1]. As one changes these

values different results will occur. Each of the parameters can be adjusted to give

different results; this will be explored in the next section in more detail.

3.4 Mathematical Formulation: Experimental Results and Model

Performance

The following figures depict the resulting images created by the boids algorithm

that has been described up until this point. The code written to generate the

From Flocks to Fish: How the Boids Algorithm Simulates Flocking Behavior 11

images closely follows the mathematical formulation for the boids model given in

this paper, however some slight adjustments were made in order to make the code

more efficient. For instance, instead of representing each individual boid as a pair

of position and velocity vectors, they were instead all represented by two 2 × n

matrices. This was done using the python library “numpy” since coding matrix

operations by hand in python would not only take a lot of time to code, but would

also take significantly more time to run. Without getting into the details, this is

because python is considered an “interpreted” language, while the code for numpy is

written in a “compiled” language. In practice compiled languages run significantly

faster than interpreted ones. It is also worth noting that, going along with the

assumption made earlier, the boids are bounded within a certain space. If the boids

touch the edge of that space they will “bounce” off the edge in the way one would

expect a rubber ball to bounce off a wall.

Fig. 8. Boids initialized in a state of chaos within range ([100, 600], [100, 1900])

As previously explained, different results should be expected from different choices

of parameters. Each of the experiments run will begin in a randomized state similar

to the one seen in Fig. 8.

Fig. 9. After a short period in time the boids will cluster into a few flocks

12 Ethan Rathbun

If all the parameters are balanced we should see the following progression: the boids

start randomly distributed within some range, they then begin to group together

into a few small groups (Fig. 9), then when the groups come near each other they

join into a single, larger flock.

Fig. 10. With a large δ the boids quickly join into a tightly bound singularity

If some parameters are chosen to be significantly larger than other parameters one

can expect certain, unique results. For instance, if δ � α then one should expect

boids that get within the given flocking radius to clump together into a singularity,

this can be seen in Fig. 10.

Fig. 11. With a small δ the boids do not form coherent flocks

Similarly, if certain parameters are chosen to be very small then other unique

results will occur. If one were to choose δ to be very small then the boids will

almost never join together into flocks and will instead remain in a state of chaos.

This can be observed in Fig. 11.

From Flocks to Fish: How the Boids Algorithm Simulates Flocking Behavior 13

Fig. 12. Even with substantially large δ and β values, if the boids’ starting velocity is

too large they will not be able to form coherent flocks

The strength of δ, along with the other parameters, should be considered relative

to the magnitude of the starting velocities of the boids. For instance, if the boids

start with extremely high velocities then they may never join into groups, even with

reasonably large δ and β values. This can be observed in Fig. 12.

3.5 Mathematical Formulation: Model Computational Complexity

For this computational complexity analysis the complexity of each, discrete time

step will be taken into consideration. This is because the overall complexity of the

model will be represented by O(t ·f(n)) where t is the number of discrete time steps

taken, and f(n) is the complexity of a single time step. During the calculations of

the separation, alignment, and cohesion values each boid compares their position to

the position of all other boids. Since there are n boids and each boid compares their

position to n−1 other boids. This results in an O(n2−n) = O(n2) time complexity.

For the sake of efficiency, this distance calculation can be performed once and

then used in each of the three velocity change calculations. After a given boid

decides which boids are within its radius, a few element-wise matrix operations are

performed. Sometimes these operations can be performed with a time complexity

O(f(n)) < O(n2), however for simplicity all of these operations will be considered

to have a O(n2) time complexity. All of these operations are performed sequentially

so the overall complexity of the model will be of the form:

O(c · n2) = O(n2)

The practical performance of the model can be improved through the optimiza-

tion of the c constant found on the left hand side of the previous equation. There

are also more efficient, albeit more difficult to code, techniques for finding all the

boids within a given range. These techniques were not used in the code created for

this paper, however, they involve the usage of an optimized version of the k-nearest

neighbors algorithm. Overall the model is still fairly efficient when put into the

context of the initially proposed problem (simulating flocking behavior), but slow

performance can be expected when using a very large number of boids.

14 Ethan Rathbun

3.6 Mathematical Formulation: Overall Conclusions

Fig. 13. Boids in the game “Half Life” dynamically choose and follow a leader to create

a more consistent and convincing motion

While the iteration of the Boids Algorithm created for this paper is an accurate

reformulation of the model, it follows the simplest form of the model that has a few

key flaws. The primary flaw is the unreliability of the model; much of the resulting

movement of the boids is heavily dependant on the initial randomization of the

boids’ positions and velocities. This means that it would not work well in computer

animation unless unpredictable behavior is desired. One way this is resolved is by

allowing the different flocks of boids to choose a flock leader. Using this method the

boids will follow the movement of the leader who will then smoothly move around

in a realistic way (Fig. 13).

Another way to mitigate this issue (as mentioned earlier in the paper) is by imple-

menting a goal object which all the boids seek out. Even in its simplest form, the

Boids Algorithm does a great job simulating the flocking motions of different crea-

tures. It also allows one to change certain parameters for different desired results,

or to experiment with the parameters to see what impact they have on the overall

behavior of the model. Thus the Boids Algorithm has shown itself to be a useful

and versatile tool for any flocking behavior that one may desire to recreate.

From Flocks to Fish: How the Boids Algorithm Simulates Flocking Behavior 15

4 References

1. Reynolds, Craig (1987). Flocks, herds and schools: A distributed behavioral

model. SIGGRAPH ’87: Proceedings of the 14th Annual Conference on Com-

puter Graphics and Interactive Techniques. Association for Computing Ma-

chinery. pp. 25–34. CiteSeerX 10.1.1.103.7187.

2. “The Boids.” The Alan Turing Institute, alan-turing-institute.github.io/rsd-

engineeringcourse/ch01data/084Boids.html.

3. Kennedy, J.; Eberhart, R. (1995). ”Particle Swarm Optimization”. Pro-

ceedings of IEEE International Conference on Neural Networks. IV. pp.

1942–1948. doi:10.1109/ICNN.1995.488968

4. Iztok Lebar Bajec, Frank H. Heppner (2009). ”Organized flight in birds”,

Animal Behaviour, Volume 78, Issue 4,

